There is often not enough tower space to accommodate a separate antenna for each repeater at crowded equipment sites. In same-band repeaters at engineered, shared equipment sites, repeaters can be connected to shared antenna systems. These are common in trunked systems, where up to 29 repeaters for a single trunked system may be located at the same site. (Some architectures such as iDEN sites may have more than 29 repeaters.)
In a shared system, a receive antenna is usually located at the top of the antenna tower. Putting the receive antenna at the top helps to capture weaker received signals than if the receive antenna were lower of the two. By splitting the received signal from the antenna, many receivers can work satisfactorily from a single antenna. Devices called receiver multicouplers split the signal from the antenna into many receiver connections. The multicoupler amplifies the signals reaching the antenna, then feeds them to several receivers, attempting to make up for losses in the power dividers (or splitters). These operate similarly to a cable TV splitter but must be built to higher quality standards so they work in environments where strong interfering signals are present.
On the transmitter side, a second transmit antenna is installed somewhere below the receive antenna. There is an electrical relationship defined by the distance between transmit and receive antennas. A desirable null exists if the transmit antenna is located exactly below the receive antenna beyond a minimum distance. Almost the same isolation as a low-grade duplexer (about −60 decibels) can be accomplished by installing the transmit antenna below, and along the centerline of, the receive antenna. Several transmitters can be connected to the same antenna using filters called combiners. Transmitters usually have directional devices installed along with the filters that block any reflected power in the event the antenna malfunctions. The antenna must have a power rating that will handle the sum of energy of all connected transmitters at the same time.
Transmitter combining systems are lossy. As a rule of thumb, each leg of the combiner has a 50% (3 decibel) power loss. If two transmitters are connected to a single antenna through a combiner, half of their power will reach the combiner output. (This assumes everything is working properly.) If four transmitters are coupled to one antenna, a quarter of each transmitter's power will reach the output of the combining circuit. Part of this loss can be made up with increased antenna gain. Fifty watts of transmitter power to the antenna will make a received signal strength at a distant mobile radio that is almost identical to 100 watts.
In trunked systems with many channels, a site design may include several transmit antennas to reduce combining network losses. For example, a six-channel trunked system may have two transmit antennas with three transmitters connected to each of the two transmit antennas. Because small variations affect every antenna, each antenna will have a slightly different directional pattern. Each antenna will interact with the tower and other nearby antennas differently. If one were to measure received signal levels, this would cause a variation among channels on a single trunked system. Variations in signal strength among channels on one trunked system can also be caused by:
- failed parts in the combiner
- characteristics of the design
- loose connectors
- bad cables
- mistuned filters
- incorrectly installed components.
Modern
Cross-band repeaters are sometimes a part of government trunked radio systems. If one community is on a trunked system and the neighboring community is on a conventional system, a talk group or agency-fleet-subfleet may be designated to communicate with the other community. In an example where the community is on 153.755 MHz, transmitting on the trunked system talk group would repeat on 153.755 MHz. Signals received by a base station on 153.755 MHz would go over the trunked system on an assigned talk group.
In conventional government systems, cross band repeaters are sometimes used to connect two agencies who use radio systems on different bands. For example, a fire department in Colorado was on a 46 MHz channel while a police department was on a 154 MHz channel, they built a cross-band repeater to allow communication between the two agencies.
If one of the systems is simplex, the repeater must have logic preventing transmitter keying in both directions at the same time. Voting comparators with a transmitter keying matrix are sometimes used to connect incompatible base stations.
Historic
In looking at records of old systems, examples of cross-band commercial systems were found in every U.S. radio service where regulations allowed them. In California, specific systems using cross-band repeaters have existed at least since the 1960s. Historic examples of cross-band systems include:
- Solano County Fire, (former Fire Radio Service): 46.240 input; 154.340 output. This system was dismantled in the 1980s and is now a same-band repeater.
- Mid-Valley Fire District, Fresno, (former Fire Radio Service): 46.140 input; 154.445 output. This system was dismantled in the 1980s and is now a same-band repeater.
- Santa Clara County Department of Parks and Recreation, (former Forestry Conservation Radio Service): 44.840 MHz input; 151.445 MHz output. This system was dismantled in the 1980s and is now a same-band repeater.
- State of California, Governor's Office of Emergency Services, Fire, (former Fire Radio Service): 33.980 MHz input; 154.160 MHz output.
In commercial systems, manufacturers stopped making cross band mobile radio equipment with acceptable specifications for public safety systems in the early 1980s. At the time, some systems were dismantled because new radio equipment was not available. Sporadic E ionospheric ducting can make the 46 MHz and below frequencies unworkable in summer.